Preschool Math Activities

It is possible to nurture young minds by making them to go through mathematical activities at a very young age. By exposing the little minds to various activities like counting, number sequencing and patterns, it is possible to train up their minds. There are various kinds of activities and they should be chosen as per the age groups. If you go through online, you can access free as well as premium sites which offer preschool math activities.

Preschool Math Activitie

How to make the most from the activities?

It is possible to make the most from preschool math activities by exposing the little minds in a systematic way. They should not be overburdened by dumping too many exercises and making them to go through lessons which are beyond their capacity. All the activities should create interest in them. They should have fun with and every activity. If you include everyday aspects in these activities, it is very easy to grasp the concept. The child will be immersed in these activities automatically when you give proper direction and encouragement.


Some of the everyday examples are ‘counting of stairs’ at home or school. The ingredients that are used in the cooking process can be counted. You can ask the child to prepare groups of various kinds of items of play. Children can remember various kinds of shapes like circles, rectangles, squares and triangles and they will also be able to form a shape by joining various items together.


It is true that the ways math are taught today are completely different from yesteryears. There are drastic changes and children have ample opportunities to explore the real world in the way it is present. Instead of teaching only one way to solve mathematical puzzles, children are encouraged to explore new ways in an open way.

The role of teacher or trainer in delivering the right kind of education is very high. If the teacher is aware of the multiple ways through which a mathematical problem can be resolved, he will encourage students to come with various solutions. The teacher should be resourceful and willing to learn and implement new strategies so that the learning process will be more intuitive. If you ask a child about the way he got the answer to a particular mathematical issue, you will understand his or her way of thinking. Instead of teaching solutions, it is required to show the way to reach those solutions. When a proper platform is created to bring out the best present in children, it is possible to teach complex math in simple ways.

When the child’s mind is molded in a proper way, the child will be able to learn the basics in an appropriate way. The child should have lots of mathematical materials such as beads and blocks. They should be encouraged to use their fingers and the body to begin the counting journey. The physical surroundings should be treated in such a way so that an interesting atmosphere is created to learn mathematics subconsciously.

Enriching and Entertaining Preschool Math Activities

Mathematics make a sense of the physical world the children live in and hence preschool math activities make a strong case for their future learning abilities and reasoning. In all normal children, there is strong desire to calculate in their crude ways as well as reason out with objects and odd tools. These children even try to make their calculations while ascertaining distances, sizes and amount of a particular item or things. Many children count the number of stairs they have to climb while at home or school. Besides, they create their own shapes of things by selecting similar objects and place them next to the other. Even in their childhood fancies and little aspirations, they bring out numbers or their additions and subtractions with totally different ideas and their own unique out of the box techniques.

Preschool Math Activities

This is the time to explore their individual creativity and little guidance can go a long way in getting them to make headway into exploring the more entertaining and complex arrangement of numbers and the sizes and amount of different boxes and toys. In the modern world, there has been a paradigm shift in the presentation and evaluation of mathematical inclinations among children and this has brought in a new perspective into the preschool math activities of the children.

Benefitting from a strong start

Children nowadays have more attractive things and wider range of items to explore than was available in ancient days and it is here preschool math activities can benefit them. Teachers and parents can make the best out of the circumstances and encourage them to do their own calculations and arithmetic so as to bring out the best potential from them. Once they get this base they would undoubtedly generate more interest and start learning more of the formal math in the future.

Again, the new ways of learning math have become even more varied with possibilities of solution in several different ways and methods. For children this would be better as they would be explore these new ways and teachers can on their part make them more receptive to ideas and problem solving methods. Sometimes, even asking a few gentle questions like ‘how did you get that answer’ or ‘how did you manage it’ can make their learning even more challenging and enriching.

There are toys and tools that experience the cognitive abilities of children by giving them a run with their imagination as well meaningfully convey an understanding that would enable them to make out solutions on their own. It is usually seen that children start to wonder and grasp math in the age period of 1 & 2. Again, studies have revealed that children of 3 years start to enjoy and explore patterns and shapes as well as matching them while by 4 years they learn the early stages of geometry and counting during their preschool math activities.


Children if helped in their preschool math activities develop better mathematical skills than those who do not. Make sure you too engage your child in preschool math activities daily.

Top 5 Daycares in Miami

What are the top daycares in Miami?

Secretary DeVos Statement on Senate Confirmation of Carlos G. Muñiz as the Department's General Counsel

WASHINGTON—U.S. Secretary of Education Betsy DeVos released the following statement after the Senate confirmation of Carlos G. Muñiz as the Education Department’s General Counsel:

“We are pleased to finally have Carlos on the team,” said Secretary DeVos. “After a protracted confirmation process, Carlos can at last get to work on behalf of our nation’s students. He has dedicated his career to upholding the law, and his insight and expertise will be invaluable as we work to advance educational opportunities for all students.”

High School Students Take a Unique Approach to Financial Education

April is Financial Capability Month. To help mark this occasion, two students offer their perspectives on their very different experiences in obtaining financial education.

Statement of U.S. Secretary of Education Betsy DeVos on the Passing of Mrs. Barbara Bush

Washington, D.C. — U.S. Secretary of Education Betsy DeVos released the following statement on the passing of former First Lady Barbara Bush:

“Barbara Bush was a woman of grace, wit, perseverance and character. She committed the entirety of her life to serving others: her family, her friends and her nation.

After Hurricanes, USVI Residents Choose Hope

After three devastating hurricanes struck the Caribbean, the Department of Education undertook a series of actions to support the U.S. Virgin Islands through their recovery process. As part of that effort, ED staff committed to travelling to the Islands to provide resources, assistance, and expertise.

U.S. Department of Education and U.S. Department of Veterans Affairs Team Up to Simplify Student Loan Discharge Process for Disabled Veterans

WASHINGTON, D.C. – The U.S. Department of Education (Department) has partnered with the U.S. Department of Veterans Affairs (VA) to make it easier for America’s disabled veterans to have their federal student loans discharged.

How ancient DNA is transforming our view of the past

Image copyright MPI Evo Anthro
Image caption Ancient DNA labs maintain strict protocols to prevent contamination of samples with modern genetic material

Prof David Reich of Harvard Medical School is one of the leading lights in the field of ancient DNA. His team’s work has cast a new perspective on human history, reconstructing the epic migrations and genetic exchanges that shaped the people of different regions worldwide. Here he explains how this revolution in our understanding unfolded.

If it seems as if there has been an avalanche of recent headlines revealing insights into the travails of our ancient ancestors, you’d be right.

From the fate of the people who built Stonehenge to the striking physical appearance of Cheddar Man, a 10,000-year-old Briton, the deluge of information has been overwhelming.

But this step change in the understanding of our past has been building for years now. It’s been driven by new techniques and technological advancements in the study of ancient DNA – genetic information retrieved from the skeletal remains of our long-dead kin.

At the forefront of this revolution is David Reich of Harvard Medical School in Boston Massachusetts. I met Prof Reich recently at the BBC while he was in the UK to talk about his book Who We Are and How We Got Here, which draws together the most recent scientific results in this field of study.

The Harvard professor, who is 43, was recently highlighted by the journal Nature as one of 10 people who mattered in all of science for his role in transforming the field of ancient DNA from “niche pursuit to industrial process”.

Image copyright OUP
Image caption David Reich took a risky decision to re-tool his laboratory for ancient DNA work; it paid off

Reich was raised in Washington DC, by parents who were distinguished in their own fields. His mother Tova is a novelist and his father Walter is a professor of psychiatry who also served as the first director of the United States Holocaust Memorial Museum.

“In my family, there was a premium and a strong belief placed on creativity – doing something new and interesting and edgy. Science was seen as the highest thing someone could do,” he says. “I had lots of interests, but the things I was most interested in were history and science.”

Reich says that he “fell in love” with human evolutionary history at the beginning of his PhD in biochemistry, but then moved away from the subject towards medical genetics. He explained: “The technology at the time really wasn’t very good for learning a lot about human history.”

Throughout the 1990s and early 2000s, studies of ancient DNA from our own species were highly contentious because of observations that skeletal remains were easily contaminated by the DNA of living people.

As such, there were always nagging doubts about whether a genetic sequence belonged to the long-dead individual being studied or to an archaeologist involved in excavating the remains, a museum curator who had handled them, or a visitor to the lab where they were being analysed.

However, crucial progress in overcoming these obstacles began in the late 90s with the effort to sequence DNA from Neanderthals, which was led by Professor Svante Pääbo at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany.

Pääbo’s group developed a set of protocols to prevent contamination slipping through, including having the same samples sequenced in two laboratories by different teams.

Image copyright Frank Vinken
Image caption Svante Paabo led the effort to sequence the first genome of a Neanderthal

But the field experienced a revolution with the emergence of so-called next-generation sequencing technology. When an organism dies, the DNA in its cells begins to break down – over time it splits into smaller and smaller chunks, as well as accumulating other forms of damage.

It also gets contaminated with vast amounts of microbial DNA from the wider environment. The new sequencing machines could be used to isolate the human genetic material from bacterial DNA and then stitch together the tiny fragments into a readable sequence.

In 2006, Reich and his close scientific collaborator Nick Paterson were invited by Svante Pääbo to join the Neanderthal genome effort. Pääbo had been particularly impressed by a Nature paper they had authored on the complex separation of the human and chimpanzee evolutionary lineages, and thought the techniques they had used would be relevant to the question of whether Neanderthals and modern humans had interbred.

“I was working on the last 10,000 years of human history, reconstructing it on the basis of present-day people, especially in India… it was obvious the ancient DNA techniques that worked in Neanderthals were going to work even better in more recent humans,” Reich explains.

“I talked to Svante and he said: ‘This is very important but it’s not my focus. I’m focused like a laser beam on archaic humans and early modern humans.'”

Reich took a radical decision to completely re-tool his laboratory at Harvard – which had been focused on medical genetics – along the lines of Pääbo’s lab in Leipzig.

Image copyright D Menke, LDA Sachsen-Anhalt
Image caption A late Neolithic mass migration from the steppe gave rise to new archaeological cultures in Europe

“There was a scientist in my laboratory, Nadin Rohland, who had worked in Leipzig (with Svante Pääbo) who knew how to do everything… they helped us to establish this laboratory. It was a big bet that this was a good thing to do.”

The bet paid off in a major way. Reich used his next-generation sequencing tech to power through genome after genome. To date, the lab has retrieved DNA from more than 900 ancient individuals.

The results are helping assemble new narratives for the peopling of our world. In some cases, the results have forced archaeologists and historians to re-visit some long-held ideas, sparking no small amount of debate and controversy.

Reich’s team has helped unravel the tangled web of migration and interbreeding that set down the present-day genetic landscape of Europe. Archaeologists had long suspected that the spread of farming out of the Near East and across Europe was a formative event in the continent’s prehistory.

Reich’s work helped confirm that this meeting of rather distantly related Near East farmers and indigenous hunter-gatherers had been crucial to the mix of ancestry that characterises Europeans, but his team added a third key ingredient to the melting pot.

In a paper published in the journal Genetics in 2012, Reich and his colleagues had spotted that Northern and Central Europeans appeared to have received genetic input from a population related to Native Americans.

Further evidence from ancient DNA would confirm that this distinctive genetic signature had entered Europe for the first time during a mass migration of people from the steppe, on Europe’s eastern periphery.

Image copyright Getty Images
Image caption In Britain, the populations that built Stonehenge builders were largely replaced around 4,500 years ago

These nomadic steppe pastoralists, known as the Yamnaya, moved west in the late Neolithic and Bronze Age, around 5,000 years ago. In some areas of Europe, they replaced around 75% of the ancestry of existing populations.

Theories of large-scale migrations had fallen out of favour over the years among some scholars, particularly those for whom the phrase “pots, not people” (that culture tends to spread via the exchange of ideas rather than large-scale movement) had become a mantra.

But successive papers from the Reich group and other teams working on ancient DNA, such as the one led by Eske Willerslev at the University of Copenhagen, showed that mass migrations, with the displacement of earlier populations, were not uncommon in history.

This year, Reich’s team published a sprawling study detailing how an archaeological culture known as the Beaker phenomenon transformed the genetic make-up of western and central Europe. In Britain, the Beakers replaced an astonishing 90% of the existing ancestry. The team isn’t finished with Britain, Reich is now planning to track changes that occurred in the Iron Age and Roman period.

Conflict, innovations such as horse riding, and the spread of diseases like plague to populations with naïve immune systems might all have played a role in some dispersals.

But the reasons behind these replacements remain a question for archaeologists, says Reich. “I think we’re providing data and it vividly portrays the magnitude of these events. Understanding why it happens is a little bit hard for me to say,” he explains.

Reich says that his collaborator Nick Paterson’s background in mathematics has been “absolutely critical” to teasing out the genetic relationships that underlie many key discoveries.

Image copyright SPL
Image caption A recent publication shed light on the epic journeys that led to the peopling of Pacific islands

“My laboratory has two lab heads not one, the other is Nick Paterson. I’m not a serious mathematician: I’m numerate, a data analyst, but not a developer of techniques. Nick is a world class mathematician.”

Paterson has an extraordinary biography. Born in 1947 to Irish parents in London, his talents made him a child maths and chess prodigy. A few years after graduating from Cambridge University, he was recruited to work for the UK’s signals intelligence agency GCHQ, where he spent a decade.

After that, he worked for another 10 years at the US equivalent, the National Security Agency (NSA). After leaving the spy world, Paterson worked for the successful New York-based hedge fund Renaissance Technologies, before beginning his collaboration with Reich in 2001.

In the last few years, the Harvard team has also published studies on ancient DNA from Africa, the Middle East and Oceania. Reich is currently finalising a paper on the peopling of South Asia – a longstanding area of interest – which should get published this year. It is likely to be pored over in India, where notions of deep-rooted ancestry are linked to Hindu nationalism.

The Harvard professor recently penned an opinion piece in the New York Times which stirred controversy online, highlighting the lack of consensus on how to frame discussions of human biological variation. In his article, Reich comments: “It is important, even urgent, that we develop a candid and scientifically up-to-date way of discussing any such differences, instead of sticking our heads in the sand and being caught unprepared when they are found.” Some 67 researchers signed an open letter (published by Buzzfeed), objecting to arguments put forward in the op-ed.

Image copyright Spl
Image caption An advanced civilisation built these structures at Mohenjo Daro in Pakistan; Reich has a long-standing interest in the history of South Asia

For example, the letter says: “Reich critically misunderstands and misrepresents concerns that are central to recent critiques of how biomedical researchers – including Reich – use categories of ‘race’ and ‘population'”.

The researchers add: “This doesn’t mean that genetic variation is unimportant; it is, but it does not follow racial lines. History has taught us the many ways that studies of human genetic variation can be misunderstood and misinterpreted.”

Asked about the criticisms, the Harvard professor told me: “I’m actually very pleased to be part of introducing this discussion. I think that scientists have been anxious about discussing differences among populations in public fora, even though all the work that we do is about differences among populations and learning about their history. The anxiety is about possible misuse of that data – for good reason.”

He stressed the need for scientists to take charge of the narrative, lest they hand the initiative to those with less benign intentions. “The thing I have felt very strongly, increasingly over time, is that the fact that scientists are too afraid to speak up about these topics means that the vacuum… gets filled by people who don’t really know the scientific facts,” he explains.

Prof Reich says that science itself shouldn’t be considered immune from the influence of longstanding assumptions. “I think there’s a huge opportunity for interpretational bias. I think that the genetic data are very seriously constraining the models that are possible right now,” he says.

But, he adds: “There’s some advantage to coming at it from the outside… arguably, there’s something to be said for a non-Jewish European person studying Jewish population history, or a person from Africa studying East Asian population history… in my lab, I’ve pushed people to work on areas that are not their own background.”

Looking to the future, Prof Reich sees huge potential for uncovering as yet unknown human movements and gene exchange in different parts of the world.

“I think Africa is a place that’s deeply under-represented. There are maybe only 20 genome sequences in what is the most diverse place in the world – the place with the deepest and most complex human history,” said Prof Reich.

“That compares to more than 1,000 genomes from Europe right now, which is an important but small corner of the world.”

He adds: “There’s so much to do.”

Follow Paul on Twitter.

Who We Are and How We Got Here by David Reich is published by Oxford University Press.

Related Topics

Read more:

Expanding Pathways to Success After High School, U.S. Department of Education Approves First Innovative EQUIP Experiment

WASHINGTON — The U.S. Department of Education announced today that Brookhaven College, part of the Dallas County Community College District (DCCCD), is the first to receive final approval to enroll students in the Educational Quality through Innovation Partnerships (EQUIP) experiment. Experimental sites, like this one, give the Department flexibility to waive specific statutory or regulatory requirements associated with disbursing Title IV student aid in order to assess the efficacy of innovative educational solutions.

Saul Zaentz Early Education Initiative at Harvard

We want to understand and unpack the insides of child care environments – not just large centers – homes and elsewhere.

Books that Amplify Early Learning

These books use illustration to convey the range of feelings and moods